State of Catastrophe modeling

R Chandrasekaran

Missing Million Dollars!

Models are tools, not the truth!

- In general, when it comes to disaster response for hurricane, the catastrophe models are falling short of the mark. (Towers Perrin (2006))
 - '...the degree to which companies got their fingers burned [after Ike] was a function of their relative degree of reliance on cat models...'
- This is in large part because by nature, cat models are a mathematical representation of reality.
 - 'like any model, the validity of[cat model] output is contingent upon the quality of the data and underlying assumptions. (A.M. Best (2006))

Event Loss Tables

Event	Event	Event	Standard	Exposure	
number	frequency	mean severity	deviation	value	
17.980	0,00000221	38.356.270	27.022.031	9.210.798.292	
17.295	0,00001687	38.167.747	26.977.425	7.894.969.965	
17.853	0,00001646	37.025.203	26.350.968	8.913.675.766	
17.368	0,00000392	36.776.847	26.281.579	8.870.752.769	
18.001	0,00001261	36.227.882	25.276.448	8.127.174.963	
17.463	0,00001151	35.988.900	25.456.216	9.059.801.599	
17.891	0,00001650	35.791.078	25.319.642	9.224.327.305	
17.851	0,00000524	35.291.528	25.137.023	12.560.179.489	
17.982	0,00000184	35.231.846	24.804.156	9.661.676.530	
17.406	0,00003356	35.007.636	17.228.653	8.840.103.294	
17.985	0,00000046	34.891.374	24.596.462	9.641.786.132	
18.004	0,00001485	34.859.180	24.256.934	7.675.665.243	
17.893	0,00001171	34.752.674	24.663.413	12.470.617.780	
18.006	0,00001539	34.630.376	24.146.792	9.528.412.026	
17.462	0,00000430	34.405.417	24.352.597	7.988.781.079	
17.645	0,00004261	34.335.089	7.222.209	10.633.160.763	
17.975	0,00000079	34.305.860	24.103.868	7.894.969.965	
17.386	0,00000113	34.255.982	24.262.113	12.799.293.564	
17.887	0,00000695		23.842.394	9.339.685.958	
17.984	0,00000346	33.574.772	23.679.793	10.392.415.990	
17.981	0,00000042	33.151.588	23.267.874	7.859.333.501	
17.983	0,00000015	32.930.112	23.175.486	8.747.473.765	
All data in €.					

Figure 2: Part of an event loss table for storm insurance divisions

California EQ Authority Policy!

Option	Type of Coverage	Amount of Coverage	Deductible	Current Basic Policy for Type of Coverage
Option 1	Structure	50%	10%, 15%, 20%*	100% with 15% deductible
Option 2	Contents	\$25,000, \$50,000, \$75,000 or \$100,000	10%, 15%, 20%**	\$5,000 with no deductible
Option 3	Loss of Use	\$10,000 or \$15,000	No deductible	\$1,500 with no deductible

Visual Business Intelligence

- A class of post-disaster response data,
- Which using high-resolution aerial and satellite reconnaissance images
- Captured in near-real time after the event,
- Provides companies with an objective visual assessment of the real world situation.

Oil facilities in Texas – Ike 2008

Before Hurricane

Visuals after Hurricane

CAT Events

Katrina, IKE/Gustav

- Flooding,
- Storm surge
- Wind damage
- Demand surge

New Zealand EQ

- •One-in-10000 year EQ (Mercalli 6.3) Unforseeability of loss
- Widespread liquefaction 10 multi storied buildings and 10000 other buildings damaged
- Hazard assessment questions
- •Reliability of building codes tested

Thailand floods

- •Inland flood causing BI losses and CBI losses
- •Low insurance density Heavy losses
- Four fifths of industrial losses
- Japan companies who relocated to Thailand after triple disaster

Source: Munich Re Publication Topics Geo 2012

CAT Events - Lessons learnt

- What credibility do models have?
- How they should be used in Business sense?
- There are limits to probabilistic approach.
- Probabilistic approach to be supplemented by a deterministic worst-case scenarios.
 - 3 nuclear accidents in 32 years
 - Existential threat events
 - We need to be more creative and imaginative about SERIOUS CONSEQUENCES

Source: Munich Re Publication Topics Geo 2012

Cat Events - Lessons learnt

- Time dependent hazard assessement
 - Where we are in the cycle?
- Disaster risk chain is a very complex phenomenon
- Social implementation gaps
- Interconnectedness of Global economy
- Limits to even Governments being the last Resort for damage compensation

Source: Munich Re Publication Topics Geo 2012